Artificial Intelligence

Descriptions of AI-relevant ontological crises typically choose examples where it seems moderately obvious how humans would want to resolve the crises. I describe here a scenario where I don’t know how I would want to resolve the crisis.

I will incidentally ridicule express distate for some philosophical beliefs.

Suppose a powerful AI is programmed to have an ethical system with a version of the person-affecting view. A version which says only persons who exist are morally relevant, and “exist” only refers to the present time. [Note that the most sophisticated advocates of the person-affecting view are willing to treat future people as real, and only object to comparing those people to other possible futures where those people don’t exist.]

Suppose also that it is programmed by someone who thinks in Newtonian models. Then something happens which prevents the programmer from correcting any flaws in the AI. (For simplicity, I’ll say programmer dies, and the AI was programmed to only accept changes to its ethical system from the programmer).

What happens when the AI tries to make ethical decisions about people in distant galaxies (hereinafter “distant people”) using a model of the universe that works like relativity?

Continue Reading

Book review: Artificial Intelligence Safety and Security, by Roman V. Yampolskiy.

This is a collection of papers, with highly varying topics, quality, and importance.

Many of the papers focus on risks that are specific to superintelligence, some assuming that a single AI will take over the world, and some assuming that there will be many AIs of roughly equal power. Others focus on problems that are associated with current AI programs.

I’ve tried to arrange my comments on individual papers in roughly descending order of how important the papers look for addressing the largest AI-related risks, while also sometimes putting similar topics in one group. The result feels a little more organized than the book, but I worry that the papers are too dissimilar to be usefully grouped. I’ve ignored some of the less important papers.

The book’s attempt at organizing the papers consists of dividing them into “Concerns of Luminaries” and “Responses of Scholars”. Alas, I see few signs that many of the authors are even aware of what the other authors have written, much less that the later papers are attempts at responding to the earlier papers. It looks like the papers are mainly arranged in order of when they were written. There’s a modest cluster of authors who agree enough with Bostrom to constitute a single scientific paradigm, but half the papers demonstrate about as much of a consensus on what topic they’re discussing as I would expect to get from asking medieval peasants about airplane safety.

Continue Reading

Book review: Where Is My Flying Car? A Memoir of Future Past, by J. Storrs Hall (aka Josh).

If you only read the first 3 chapters, you might imagine that this is the history of just one industry (or the mysterious lack of an industry).

But this book attributes the absence of that industry to a broad set of problems that are keeping us poor. He looks at the post-1970 slowdown in innovation that Cowen describes in The Great Stagnation[1]. The two books agree on many symptoms, but describe the causes differently: where Cowen says we ate the low hanging fruit, Josh says it’s due to someone “spraying paraquat on the low-hanging fruit”.

The book is full of mostly good insights. It significantly changed my opinion of the Great Stagnation.

The book jumps back and forth between polemics about the Great Strangulation (with a bit too much outrage porn), and nerdy descriptions of engineering and piloting problems. I found those large shifts in tone to be somewhat disorienting – it’s like the author can’t decide whether he’s an autistic youth who is eagerly describing his latest obsession, or an angry old man complaining about how the world is going to hell (I’ve met the author at Foresight conferences, and got similar but milder impressions there).

Josh’s main explanation for the Great Strangulation is the rise of Green fundamentalism[2], but he also describes other cultural / political factors that seem related. But before looking at those, I’ll look in some depth at three industries that exemplify the Great Strangulation.

Continue Reading

Book review: The Book of Why, by Judea Pearl and Dana MacKenzie.

This book aims to turn the ideas from Pearl’s seminal Causality into something that’s readable by a fairly wide audience.

It is somewhat successful. Most of the book is pretty readable, but parts of it still read like they were written for mathematicians.

History of science

A fair amount of the book covers the era (most of the 20th century) when statisticians and scientists mostly rejected causality as an appropriate subject for science. They mostly observed correlations, and carefully repeated the mantra “correlation does not imply causation”.

Scientists kept wanting to at least hint at causal implications of their research, but statisticians rejected most attempts to make rigorous claims about causes.

Continue Reading

Book review: Warnings: Finding Cassandras to Stop Catastrophes, by Richard A. Clarke and R.P. Eddy.

This book is moderately addictive softcore version of outrage porn. Only small portions of the book attempt to describe how to recognize valuable warnings and ignore the rest. Large parts of the book seem written mainly to tell us which of the people portrayed in the book we should be outraged at, and which we should praise.

Normally I wouldn’t get around to finishing and reviewing a book containing this little information value, but this one was entertaining enough that I couldn’t stop.

The authors show above-average competence at selecting which warnings to investigate, but don’t convince me that they articulated how they accomplished that.

I’ll start with warnings on which I have the most expertise. I’ll focus a majority of my review on their advice for deciding which warnings matter, even though that may give the false impression that much of the book is about such advice.
Continue Reading

[Warning: long post, of uncertain value, with annoyingly uncertain conclusions.]

This post will focus on how hardware (cpu power) will affect AGI timelines. I will undoubtedly overlook some important considerations; this is just a model of some important effects that I understand how to analyze.

I’ll make some effort to approach this as if I were thinking about AGI timelines for the first time, and focusing on strategies that I use in other domains.

I’m something like 60% confident that the most important factor in the speed of AI takeoff will be the availability of computing power.

I’ll focus here on the time to human-level AGI, but I suspect this reasoning implies getting from there to superintelligence at speeds that Bostrom would classify as slow or moderate.
Continue Reading

The paper When Will AI Exceed Human Performance? Evidence from AI Experts reports ML researchers expect AI will create a 5% chance of “Extremely bad (e.g. human extinction)” consequences, yet they’re quite divided over whether that implies it’s an important problem to work on.

Slate Star Codex expresses confusion about and/or disapproval of (a slightly different manifestation of) this apparent paradox. It’s a pretty clear sign that something is suboptimal.

Here are some conjectures (not designed to be at all mutually exclusive).
Continue Reading

A new paper titled When Will AI Exceed Human Performance? Evidence from AI Experts reports some bizarre results. From the abstract:

Researchers believe there is a 50% chance of AI outperforming humans in all tasks in 45 years and of automating all human jobs in 120 years, with Asian respondents expecting these dates much sooner than North Americans.

So we should expect a 75 year period in which machines can perform all tasks better and more cheaply than humans, but can’t automate all occupations. Huh?

I suppose there are occupations that consist mostly of having status rather than doing tasks (queen of England, or waiter at a classy restaurant that won’t automate service due to the high status of serving food the expensive way). Or occupations protected by law, such as gas station attendants who pump gas in New Jersey, decades after most drivers switched to pumping for themselves.

But I’d be rather surprised if machine learning researchers would think of those points when answering a survey in connection with a machine learning conference.

Maybe the actual wording of the survey questions caused a difference that got lost in the abstract? Hmmm …

“High-level machine intelligence” (HLMI) is achieved when unaided machines can accomplish every task better and more cheaply than human workers

versus

when all occupations are fully automatable. That is, when for any occupation, machines could be built to carry out the task better and more cheaply than human workers.

I tried to convince myself that the second version got interpreted as referring to actually replacing humans, while the first version referred to merely being qualified to replace humans. But the more I compared the two, the more that felt like wishful thinking. If anything, the “unaided” in the first version should make that version look farther in the future.

Can I find any other discrepancies between the abstract and the details? The 120 years in the abstract turns into 122 years in the body of the paper. So the authors seem to be downplaying the weirdness of the results.

There’s even a prediction of a 50% chance that the occupation “AI researcher” will be automated in about 88 years (I’m reading that from figure 2; I don’t see an explicit number for it). I suspect some respondents said this would take longer than for machines to “accomplish every task better and more cheaply”, but I don’t see data in the paper to confirm that [1].

A more likely hypothesis is that researchers alter their answers based on what they think people want to hear. Researchers might want to convince their funders that AI deals with problems that can be solved within the career of the researcher [2], while also wanting to reassure voters that AI won’t create massive unemployment until the current generation of workers has retired.

That would explain the general pattern of results, although the magnitude of the effect still seems strange. And it would imply that most machine learning researchers are liars, or have so little understanding of when HLMI will arrive that they don’t notice a 50% shift in their time estimates.

The ambiguity in terms such as “tasks” and “better” could conceivably explain confusion over the meaning of HLMI. I keep intending to write a blog post that would clarify concepts such as human-level AI and superintelligence, but then procrastinating because my thoughts on those topics are unclear.

It’s hard to avoid the conclusion that I should reduce my confidence in any prediction of when AI will reach human-level competence. My prior 90% confidence interval was something like 10 to 300 years. I guess I’ll broaden it to maybe 8 to 400 years [3].

P.S. – See also Katja’s comments on prior surveys.

[1] – the paper says most participants were asked the question that produced the estimate of 45 years to HLMI, the rest got the question that produced the 122 year estimate. So the median for all participants ought to be less than about 84 years, unless there are some unusual quirks in the data.

[2] – but then why do experienced researchers say human-level AI is farther in the future than new researchers, who presumably will be around longer? Maybe the new researchers are chasing fads or get-rich-quick schemes, and will mostly quit before becoming senior researchers?

[3] – years of subjective time as experienced by the fastest ems. So probably nowhere near 400 calendar years.

Book review: The Measure of All Minds: Evaluating Natural and Artificial Intelligence, by José Hernández-Orallo.

Much of this book consists of surveys of the psychometric literature. But the best parts of the book involve original results that bring more rigor and generality to the field. The best parts of the book approach the quality that I saw in Judea Pearl’s Causality, and E.T. Jaynes’ Probability Theory, but Measure of All Minds achieves a smaller fraction of its author’s ambitions, and is sometimes poorly focused.

Hernández-Orallo has an impressive ambition: measure intelligence for any agent. The book mentions a wide variety of agents, such as normal humans, infants, deaf-blind humans, human teams, dogs, bacteria, Q-learning algorithms, etc.

The book is aimed at a narrow and fairly unusual target audience. Much of it reads like it’s directed at psychology researchers, but the more original parts of the book require thinking like a mathematician.

The survey part seems pretty comprehensive, but I wasn’t satisfied with his ability to distinguish the valuable parts (although he did a good job of ignoring the politicized rants that plague many discussions of this subject).

For nearly the first 200 pages of the book, I was mostly wondering whether the book would address anything important enough for me to want to read to the end. Then I reached an impressive part: a description of an objective IQ-like measure. Hernández-Orallo offers a test (called the C-test) which:

  • measures a well-defined concept: sequential inductive inference,
  • defines the correct responses using an objective rule (based on Kolmogorov complexity),
  • with essentially no arbitrary cultural bias (the main feature that looks like an arbitrary cultural bias is the choice of alphabet and its order)[1],
  • and gives results in objective units (based on Levin’s Kt).

Yet just when I got my hopes up for a major improvement in real-world IQ testing, he points out that what the C-test measures is too narrow to be called intelligence: there’s a 960 line Perl program that exhibits human-level performance on this kind of test, without resembling a breakthrough in AI.
Continue Reading